Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(15): 5277-5280, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28350443

RESUMO

Virus-like particles (VLPs) are stable protein cages derived from virus coats. They have been used extensively as biomolecular platforms, e.g., nanocarriers or vaccines, but a convenient in situ technique is lacking for tracking functional status. Here, we present a simple way to monitor disassembly of 19F-labeled VLPs derived from bacteriophage Qß by 19F NMR. Analysis of resonances, under a range of conditions, allowed determination not only of the particle as fully assembled but also as disassembled, as well as detection of a degraded state upon digestion by cells. This in turn allowed mutational redesign of disassembly and testing in both bacterial and mammalian systems as a strategy for the creation of putative, targeted-VLP delivery systems.


Assuntos
Flúor/química , Ressonância Magnética Nuclear Biomolecular , Vacinas de Partículas Semelhantes a Vírus/análise , Proteínas Virais/química , Bacteriófago lambda/química
2.
Angew Chem Int Ed Engl ; 55(41): 12868-72, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27628158

RESUMO

The synthesis and structure of the first 1,2-bis(NHSi)-substituted ortho-carborane [(LSi:)C]2 B10 H10 (termed SiCCSi) is reported (NHSi=N-heterocyclic silylene; L=PhC(NtBu)2 ). Its suitability to serve as a reliable bis(silylene) chelating ligand for transition metals is demonstrated by the formation of [SiCCSi]NiBr2 and [SiCCSi]Ni(CO)2 complexes. The CO stretching vibration modes of the latter indicate that the Si(II) atoms in the SiCCSi ligand are even stronger σ donors than the P(III) atoms in phosphines and C(II) atoms in N-heterocyclic carbene (NHC) ligands. Moreover, the strong donor character of the [SiCCSi] ligand enables [SiCCSi]NiBr2 to act as an outstanding precatalyst (0.5 mol % loading) in the catalytic aminations of arenes, surpassing the activity of previously known molecular Ni-based precatalysts (1-10 mol %).

3.
Chemistry ; 21(51): 18811-20, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26561034

RESUMO

We have studied the mechanism of the palladium-catalyzed reductive Heck reaction of para-substituted enones with 4-iodoanisole by using N,N-diisopropylethylamine (DIPEA) as the reductant. Kinetic studies and in situ spectroscopic analysis have provided a detailed insight into the reaction. Progress kinetic analysis demonstrated that neither catalyst decomposition nor product inhibition occurred during the catalysis. The reaction is first order in the palladium and aryl iodide, and zero order in the activated alkene, N-heterocyclic carbene (NHC) ligand, and DIPEA. The experiments with deuterated solvent ([D7]DMF) and deuterated base ([D15]Et3N) supported the role of the amine as a reductant in the reaction. The palladium complex [Pd(0)(NHC)(1)] has been identified as the resting state. The kinetic experiments by stopped-flow UV/Vis also revealed that the presence of the second substrate, benzylideneacetone 1, slows down the oxidative addition of 4-iodoanisole through its competing coordination to the palladium center. The kinetic and mechanistic studies indicated that the oxidative addition of the aryl iodide is the rate-determining step. Various scenarios for the oxidative addition step have been analyzed by using DFT calculations (bp86/def2-TZVP) that supported the inhibiting effect of substrate 1 by formation of resting state [Pd(0)(NHC)(1)] species at the cost of further increase in the energy barrier of the oxidative addition step.

4.
ChemSusChem ; 8(10): 1745-51, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25908308

RESUMO

Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) is studied on solid metal electrodes in acidic solution (0.5 M H2 SO4 ) by correlating voltammetry with on-line HPLC product analysis. Three soluble products from HMF hydrogenation are distinguished: 2,5-dihydroxymethylfuran (DHMF), 2,5-dihydroxymethyltetrahydrofuran (DHMTHF), and 2,5-dimethyl-2,3-dihydrofuran (DMDHF). Based on the dominant reaction products, the metal catalysts are divided into three groups: (1) metals mainly forming DHMF (Fe, Ni, Cu, and Pb), (2) metals forming DHMF and DMDHF depending on the applied potentials (Co, Ag, Au, Cd, Sb, and Bi), and (3) metals forming mainly DMDHF (Pd, Pt, Al, Zn, In, and Sb). Nickel and antimony are the most active catalysts for DHMF (0.95 mM cm(-2) at ca. -0.35 VRHE and -20 mA cm(-2) ) and DMDHF (0.7 mM cm(-2) at -0.6 VRHE and -5 mA cm(-2) ), respectively. The pH of the solution plays an important role in the hydrogenation of HMF: acidic condition lowers the activation energy for HMF hydro-genation and hydrogenates the furan ring further to tetrahydrofuran.


Assuntos
Furaldeído/análogos & derivados , Metais/química , Catálise , Técnicas Eletroquímicas , Furaldeído/química , Concentração de Íons de Hidrogênio , Hidrogenação , Ácidos Sulfúricos/química
5.
J Am Chem Soc ; 137(7): 2680-7, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25632976

RESUMO

Regio- and enantioselective hydroformylation of styrenes is attained upon embedding a chiral Rh complex in a nonchiral supramolecular cage formed from coordination-driven self-assembly of macrocyclic dipalladium complexes and tetracarboxylate zinc porphyrins. The resulting supramolecular catalyst converts styrene derivatives into aldehyde products with much higher chiral induction in comparison to the nonencapsulated Rh catalyst. Spectroscopic analysis shows that encapsulation does not change the electronic properties of the catalyst nor its first coordination sphere. Instead, enhanced enantioselectivity is rationalized by the modification of the second coordination sphere occurring upon catalyst inclusion inside the cage, being one of the few examples in achieving an enantioselective outcome via indirect through-space control of the chirality around the catalyst center. This effect resembles those taking place in enzymatic sites, where structural constraints imposed by the enzyme cavity can impart stereoselectivities that cannot be attained in bulk. These results are a showcase for the future development of asymmetric catalysis by using size-tunable supramolecular capsules.


Assuntos
Aldeídos/química , Ródio/química , Estireno/química , Amidas/química , Catálise , Modelos Moleculares , Conformação Molecular , Ácidos Fosfóricos/química , Estereoisomerismo
6.
Org Biomol Chem ; 12(37): 7179-93, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25098332

RESUMO

The design and catalytic implementation of tandem reactions to selectively create nitrogen-containing products under mild conditions has encountered numerous challenges in synthetic chemistry. Several known classes of homogeneously catalyzed carbon-nitrogen bond formation including hydroamination, hydroamidation, hydroaminoalkylation, hydroaminomethylation and reductive amination were reported in the literature. More recently, a new class of C-N bond formation consisting of hydroamidomethylation and reductive amidation extended the applicability of these synthetic methodologies. The tandem reactions do considerably impact on the selectivity and efficiency of synthetic strategies. This review highlights and compares selected examples of the hydroaminomethylation, reductive amination, hydroamidomethylation and reductive amidation reactions, and thus consequently reveals their potential applications in synthetic chemistry as well as chemical industries.

7.
ChemSusChem ; 7(7): 1984-90, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24938779

RESUMO

The conversion of γ-valerolactone (GVL) in three atom-efficient steps to the important polymer precursor ε-caprolactam is reported. The bio-based GVL can be converted to a mixture of isomeric methyl pentenoates (MP) via trans-esterification with methanol with 94% yield (ratio of 3-MP/4-MP=3:1); subsequent aminolysis with ammonia leads to a mixture of pentenamides (PA) almost quantitatively (99% conversion). The resulting pentenamides are ultimately converted into ε-caprolactam via a rhodium-catalyzed intramolecular hydroamidomethylation reaction, comprising an initial hydroformylation of the alkene moiety of PA and subsequent ring-closing reductive amidation of the resulting aldehyde with the amide functionality. A promising yield of caprolactam of about 90% can be obtained with a Rh/xantphos catalyst system in a two-stage hydroformylation-reductive amidation using pure 4-PA as feedstock. The use of 3-PA as a substrate not only results in a significantly lower regioselectivity for the 7-membered lactam, but also in the formation of high amounts of valeramide (VA). Consequently, a best overall yield of caprolactam of nearly 40% could be demonstrated with a Rh/POP-xantphos [POP-xantphos=4,5-bis(2,8-dimethyl-10-phenoxaphosphino)-9,9,-dimethylxanthene] catalyst system based on the 3:1 mixture of 3-PA/4-PA directly obtainable from GVL.


Assuntos
Caprolactama/química , Lactonas/química , Nylons/química , Catálise , Conservação dos Recursos Naturais , Água/química
8.
ChemSusChem ; 6(9): 1759-73, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24009108

RESUMO

A rhodium/xantphos homogeneous catalyst system has been developed for direct chemo- and regioselective mono-N-alkylation of primary amides with 1-alkenes and syngas through catalytic hydroamidomethylation with 1-pentene and acetamide as model substrates. For appropriate catalyst performance, it appears to be essential that catalytic amounts of a strong acid promoter, such as p-toluenesulfonic acid (HOTs), as well as larger amounts of a weakly acidic protic promoter, particularly hexafluoroisopropyl alcohol (HOR(F) ) are applied. Apart from the product N-1-hexylacetamide, the isomeric unsaturated intermediates, hexanol and higher mass byproducts, as well as the corresponding isomeric branched products, can be formed. Under optimized conditions, almost full alkene conversion can be achieved with more than 80% selectivity to the product N-1-hexylamide. Interestingly, in the presence of a relatively high concentration of HOR(F) , the same catalyst system shows a remarkably high selectivity for the formation of hexanol from 1-pentene with syngas, thus presenting a unique example of a selective rhodium-catalyzed hydroformylation-hydrogenation tandem reaction under mild conditions. Time-dependent product formation during hydroamidomethylation batch experiments provides evidence for aldehyde and unsaturated intermediates; this clearly indicates the three-step hydroformylation/condensation/hydrogenation reaction sequence that takes place in hydroamidomethylation. One likely role of the weakly acidic protic promoter, HOR(F) , in combination with the strong acid HOTs, is to establish a dual-functionality rhodium catalyst system comprised of a neutral rhodium(I) hydroformylation catalyst species and a cationic rhodium(III) complex capable of selectively reducing the imide and/or ene-amide intermediates that are in a dynamic, acid-catalyzed condensation equilibrium with the aldehyde and amide in a syngas environment.


Assuntos
Alcenos/química , Amidas/química , Ródio/química , Aldeídos/química , Atmosfera , Monóxido de Carbono/química , Catálise , Hidrogênio/química , Cinética , Metilação , Oxirredução , Estereoisomerismo , Especificidade por Substrato
9.
ChemSusChem ; 6(9): 1659-67, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23857762

RESUMO

Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dihydroxymethylfuran (DHMF) or other species, such as 2,5-dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on-line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1) DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2) DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3) other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst-dependent because all catalysts show similar onset potentials (-0.5 ± 0.2 V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1 mM cm(-2) with high selectivity> 85%). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron-transfer step during HMF reduction is not metal-dependent, suggesting a non-catalytic reaction with proton transfer directly from water in the electrolyte.


Assuntos
Furaldeído/análogos & derivados , Glucose/química , Catálise , Eletroquímica , Eletrodos , Furaldeído/química , Furanos/química , Hidrogenação , Metais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...